

Directions: Circle the term in parentheses that correctly completes the sentence.

- **5.** As a car follows a bend in the road going to the left, its centripetal acceleration is to the (right/left).
- **6.** Displacement depends on an object's distance and (speed/direction) compared to a starting point.
- **7.** An automobile that slows down when approaching a stop sign has (negative, positive) acceleration.

Directed Reading for Content Mastery Section 1 - Describing Motion Directions: For each of the following, write the letter of the term or phrase that best completes the sentence. ______1. A sprinter runs 200 m west and 100 m east. Her displacement is _____. a. 300 m b. 100 m west ______2. Speed can be calculated by dividing distance by _____. a. time b. displacement

Date

- **3.** The speed of a motorcycle at a particular moment is its _____ speed.
 a. average
 b. instantaneous
 - **4.** Earth's plates move only a few _____ per year. **a.** centimeters **b.** meters
 - **5.** Two cars are each traveling at 72 km/h. One car is traveling northeast, and the other is traveling south. The two cars have different _____.
 - **a.** velocities **b.** speeds

Directions: Look at the graph. Match the letters in the graph to the sentences below.

- **6.** Ruth stops for 10 minutes to speak to a friend.
- **7.** She walks at a constant speed of 80 m/min.
 - **8.** She jogs 600 m in 5 minutes.

Name		Date	Class
	Directed Reading for	Section 2 ∎ Velo	citv and Momentum
	Content Mastery	Section 3 Acce	leration

Directions: Answer the following questions.

- **1.** Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years.
- **2.** Explain why it is important to identify a reference point for any description of motion.
- **3.** How is it possible for two objects to have the same momentum, but different velocities? Give an example.
- **4.** A table tennis ball with a mass of 0.003 kg and a soccer ball with a mass of 0.43 kg are both set in motion at 16 m/s. Calculate and compare the momenta of both balls.

Directions: Complete the paragraph & acceleration negative	by filling in the blanks using the ter velocity positive	rms listed below. direction time		
Acceleration occurs when a	changes.			
When an object speeds up, it h	acceleration. When			
an object's final velocity is less than its initial velocity, however, it has 7.				
acceleration. An object that is changing				
• is accelerating, even if its speed remains the same.				
Acceleration can be calculated by dividing the change in velocity by the				
9 interval in which the change occurred. The SI unit				
of 10.	$_$ is m/s ² .			

Directions: Use the clues below to complete the crossword puzzle.

Across

- **1.** includes both the speed of an object and the direction if it moving
- **4.** a measure of how far an object has moved from a starting point
- 5. the rate of change of velocity
- 6. the distance an object travels per unit of time
- 7. _____ is the acceleration towards the inside of a curved path.
- 10. the product of mass and velocity

Down

- 2. The rate of change in position at a given point in time is _____ speed.
- 8. _____ speed is equal to the total distance traveled divided by the total time of travel
- **9.** the distance and direction of an object from a starting point
- **11.** Change in velocity is the final speed minus the _____ speed.